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Abstract 

A method of estimating of the region of attainable states of a reactive system, called the attainable 
region (AR), using an artificial neural network is proposed. The method is framed as a binary 
classification problem and trained from a number of reference attainable regions that act as the ground 
truth in a supervised learning framework. Once trained, the neural network is asked to distinguish 
between attainable and unattainable states given information about the system such as the feed state. We 
find that an appropriately trained feed-forward neural network can often estimate regions of attainability 
with high similarity to reference regions produced by a conventional automated AR construction 
method.  
The method is tested on two systems of varying dimension and complexity, and in both cases the neural 
network is capable of producing boundary estimations with high confidence. Neural network 
architecture and training characteristics suitable for attainability estimation are also briefly described. 
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Introduction 

The design of a network of chemical reactors that are 
orchestrated to operate in an optimal manner, for a 
specified duty, is known as the reactor network synthesis 
problem. The challenge of reactor network synthesis and, 
in general, reactor design is that once a design has been 
formulated, one is often unaware if there are other designs 
that are superior. Attainable region (AR) theory is seeks to 
address this problem. The collection of all possible 
outputs, for all possible reactor configurations, even those 
that have not been conceptualized, is known as the 
attainable region. 

Whilst the theory of attainable regions is well 
developed (Feinberg and Hildebrandt, 1997), it is either 
infeasible or impractical to analytically carry out the 
computations for many realistic systems. Thus, one must 
often resort to numerical constructions of candidate 
regions for practical performance targeting purposes. Over 
roughly the past two decades, a number of AR 
construction routines have been formulated that cater 
toward different construction scenarios. However, the non-
linear nature of reaction chemistry, as well as the 
geometric nature of AR theory, means that it is thus often 
computationally burdensome to construct an attainable 
region, which constrains its use in environments where 
potentially many candidate regions might need to be 
generated. 

The ability of neural networks to generalize and infer 
trends in data makes them excellent candidates for control 
and monitoring applications. Machine learning methods 
have been widely reported in chemical engineering 
literature over the past three decades, and as a result the 
scientific literature describing their use is vast. As of yet, 
no work is known to exist applying neural networks to 
problems in AR theory.  
 

Attainability estimation using artificial neural 
networks 

We propose a supervised learning problem where an 
artificial neural network is trained to predict if a test state, 
Ci, is feasible when supplied with feed and kinetic 
information.  

As a demonstration, Figure 1 shows the output of a 
neural net trained to predict the AR for two-dimensional 
Van de Vusse kinetics (Van de Vusse, 1964). The shaded 
region in Figure 1 corresponds to the theoretically correct 
AR that is supplied at run-time for an arbitrary feed point, 
which is drawn as a triangle in the figure. The shaded 
region acts as the ground truth wherefrom an error is 
computed. Confidence contours outline the certainty held 
by the neural network in estimating whether states in cA-cB 
space are achievable or not. 

Figure 1: Prediction of 2-D Van de Vusse 
kinetics 

 
The neural network predicts a large portion of the true 
region with a greater than 50% confidence. Moreover, 
whereas the reference region must be generated via a 
relatively expensive computational procedure (using an 
automated AR construction algorithm), the neural network 
prediction is obtained orders of magnitude faster. 

The network has never been exposed to the input feed 
before, yet it is able to output a region of feasibility in 
agreement with the reference region. 

Input representation and network architecture 

The core of the method centers on a binary classification 
problem. By repeatedly querying the trained network to 
classify unseen test points, a collection of points in state 
space can be gathered that belong to the AR. 

Figure 2: Embedding features 

Figure 2 shows the required dimensions of the input 
and output layers of the neural network. The number of 
neurons in the input layer must match the number of 
features in the training problem, which might consist of 
feed, kinetic and state information. The target layer is a 



  

single neuron that outputs a scalar value between zero and 
one, mapping the neural network's confidence where 
values closer to one are considered by the network to be 
more likely to be attainable. 

Training is carried out by feeding L training examples   
for the input layer and L binary (or boolean) targets   for 
the output layer in conjunction with a suitable training 
scheme, and appropriate tuning of the algorithm's hyper-
parameters. 

Since AR boundaries are convex by definition, we can 
represent a reference region as a convex set of points, 
which can be converted to a system of inequality 
constraints that always obeys the above inequality 
constraints. 

Prediction and AR boundary construction 

Classification is carried out by constructing a test vector 
containing feed, kinetic and potentially other significant 
state information and forward propagating it through a 
trained network. The output value, q, of the neural network 
is then a real number, valued between zero and one, 
representing a confidence estimate of achievability.  

Increasing both the quantity of hidden layers and 
neurons per layer improves classification performance, but 
the specific strength of their effect will generally be 
problem dependent. The total number of neurons available 
in a network is a proxy for the inference capacity of the 
network, but this capacity could be arranged into different 
architectures that each distribute capacity differently, 
resulting in different performance over similar datasets. 

To gain a sense of how validation performance is 
influenced by network capacity for AR boundary 
constructions, a population of approximately 1000 neural 
network architectures was created, where each network 
contained a random permutation of hidden layers and 
neurons per layer. Each network was then trained over 50 
epochs with a subset of 104 randomly sampled training 
examples, recording the final validation accuracy after 
each run. Preliminary results are shown in Figure 3. 

Figure 3: Prediction accuracy and network 
capacity 

We find that validation accuracy improved with an 
increase in both the quantity of hidden layers and neurons 
present in each layer. Increasing the number of hidden 
layers tends to have a stronger influence on validation 
accuracy than the number of neurons per layer, although 
even for deep architectures–indicated here by networks 
with at least four hidden layers–accuracy tends to be 
limited by approximately seven neurons per layer, which 
may suggest that overall inference capacity is constrained 
for these systems. 

Conclusion 

In this work, we assess the viability of using neural 
networks as a fast attainability estimator. A number of 
neural networks were created and trained on three different 
systems of varying complexity. For the systems currently 
considered, the neural net appears to learn the connection 
between changes in feed composition and variations of 
kinetic parameters. All predicted regions from the neural 
networks were compared with reference regions that were 
generated from an automated AR construction method. 
Given sufficient training data and training time, the neural 
networks achieved greater than 98% validation accuracy. 
Overfitting was undetected in the problems considered, 
and hence the use of regularisation techniques, such as 
dropout, was optional. 

In the examples investigated, the neural networks 
predicted candidate regions that agreed with the reference 
regions in terms of shape and size.  

Training data requirements and network capacity have 
also briefly been investigated. Classification efficiency 
improves with increasing dataset sizes and network 
capacity, although classification performance tends to 
increase with an exponential increase in the number of 
training examples. 
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