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Abstract 

We present the application of a machine learning based multi-scale modeling approach to fluidized bed 

reactors. The solid phase is characterized by tracking each particle in the domain (DEM – Discrete 

Element Method), whereas the gas phase is solved by means of the Navier-Stokes, mass and energy 

balances. The gas-solid exchange terms are computed for each particle and exploited in the gas phase as 

source terms. The catalytic chemistry is solved by means of microkinetic models for each particle leading 

to a high computational cost. To reduce the computational load, machine learning methods, based on In 

Situ Adaptive Tabulation (ISAT) and Cell Agglomeration (CA) techniques, have been applied leading to 

a five-fold speed-up with a peak performance up to 25.  

Keywords 

MACHINE LEARNING, CFD-DEM, MICROKINETIC MODELS 

Introduction

Fluidized systems are a key technology in the most 

challenging catalytic processes (e.g. anhydrides, FCC) and 

for the design of novel processes (e.g. OCM or the carbon 

nanotubes production). Nevertheless, the fundamental 

understanding of these units is hampered by the multi-scale 

nature of the involved phenomena (surface reactions, 

reactor scale transport phenomena, gas-solid interactions). 

In this context, the multi-scale modeling of catalytic 

systems has been acknowledged as a promising tool. In this 

work, we extend the methodology, successfully applied to 

fixed bed reactors (Maestri and Cuoci, 2013), to fluidized 

beds, by combining the microkinetic description of the 

heterogeneous chemistry with CFD-DEM (Uglietti et al., 

2018). Despite its efficiency, the approach is limited by a 

high computational cost, which is linearly proportional to 

the number of particles. This practically limits the bed size 

to the order of 104 particles. In this contribution, we also 

apply machine learning techniques (ML) (Goldsmith et al., 
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2018) to reduce the computational cost of the chemistry. In 

particular, we implemented two machine learning methods 

based on In Situ Adaptive Tabulation (ISAT) and Cell 

Agglomeration (CA) algorithms. These methods, at each 

time step, are based on the selection of a small group of 

representative particles considering previous particles 

integrations (ISAT) or of particle similarities along the 

whole catalytic bed (CA). Kinetic evaluations are 

performed only on these selected particles, while the kinetic 

information on the rest of the particles derived from them, 

resulting in speed-up factors up to 25. 

Methodology 

According to CFD-DEM, the solid phase tracking, 

balances and collisional events are solved particle-wise. At 

each time step, the gas-solid exchange rates are evaluated 

for each particle. The gas phase is updated with 



  

 

fundamental balances by means of the gas-solid transfer 

terms computed during DEM. The ISAT (Bracconi et al., 

2017) and CA (Rebughini et al., 2016) algorithms have been 

applied to the mass and energy balances of the particles. 

ISAT has been implemented by means of the operator-

splitting (OS), which accounts, in separate fractional time 

steps, for the gas-particle species and heat transport and the 

chemistry. Differently from fixed beds the transport can be 

analytically solved, whereas ISAT is applied to the more 

computationally-intensive chemical sub-step. ISAT is a 

storage and retrieval method which accurately 

approximates the reactivity of a catalytic particle based on 

previously stored information. At each time step, ISAT 

assesses if a pellet is similar to another one previously 

stored. If so, the results of the particle are approximated 

based on the stored one, otherwise the particle is solved and 

added to a table (built during the simulation). CA is an 

agglomeration algorithm which groups particles in a small 

number of bins. At each time step, each bin is solved 

considering the average properties and state variables of the 

underlying group, reducing the number of computationally-

intensive calculations. CA has been applied for the first time 

without the operator-splitting algorithm, thus considering at 

the same time transport and reaction, differently from the 

current applications in fixed bed contexts. 

Results and Discussion 

We tested our method in an isothermal fluidized bed of 

104 particles (Figure 1a). We tested both a rate-equation and 

a microkinetic model in case of the methane CPO as 

benchmark reaction. The results obtained by means of ISAT 

and CA have been compared with the one achieved without 

ML obtaining a maximum error of 3.7%. Figure 1b reports 

the speed-up obtained with ISAT and CA in case of rate-

equation model. A relevant speed-up is obtained by means 

of both ISAT and CA. In particular, we found that the 

efficiency of the ISAT algorithm is limited by the efficiency 

of OS after the start of syngas production. In fact, OS alone 

is slower than the coupled transport and reaction whenever 

the smallest chemical characteristic time in the system is 

lower than the simulation time step (e.g. for the syngas 

combustion in methane CPO). In case of microkinetic 

model (Figure 1c), the OS is slower than the coupled 

approach during the whole simulation, due to the fast 

adsorption and desorption reactions (Uglietti et al, 2018), 

limiting the speed-up of ISAT. On the other hand, the CA is 

no more limited by OS, and we obtained a factor of 25 at 

the beginning of the simulation when the catalyst surface is 

almost completely covered by oxygen. On the other hand, 

when syngas production starts the surface composition 

becomes more complex, and the CA speed-up is lower 

(even if still higher than 5) due to the importance also of 

non-MARI low-content coverage species, when comparing 

the composition between two different particles. Additional 

tests will be performed by considering only the main non-

adsorbed species and MARI when agglomerating particles 

to furtherly improve the computational gain provided by 

CA. 

Conclusions 

A multi-scale approach has been developed to integrate 

microkinetic modeling and fluidized reactive systems based 

on the detailed tracking of the particles of the bed. Two ML 

techniques, i.e. ISAT and CA, has been successfully 

applied, obtaining, respectively, an average speed-up of 2 

and 12 in case of rate-equation, and of 4 and 5 with a peak 

of 25 for CA in case of detailed microkinetic model. As 

such, our framework enables the fundamental investigation 

of fluidized system, paving the way for bigger and more 

complex domains.  
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Figure 1 Machine learning speed-up in case of 104 pellets(a) for rate-equation model (b) and microkinetic model(c) of methane CPO  
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