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Abstract 

Chemical reactor, -reaction and -process engineering can greatly benefit from recent developments in 

artificial intelligence and machine learning. With the vast amounts of process data available to industrial 

players, AI models can be constructed which are faster, more accurate and more memory efficient than 

current models. The use of deep learning artificial neural networks at three different scales of the steam 

cracking process is discussed. For reconstructing steam cracker feedstocks and predicting effluent 

compositions, it is proven that highly accurate, predictive machine learning models can be constructed. A 

deep learning artificial neural network can predict the product yields of 31 important compounds. With 

other potential applications such as increasing the efficiency of reactor (profile) simulations and more 

accurate property estimation at a molecular scale coming within reach, the sky promises to be the limit for 

the application of artificial neural networks. 
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Introduction  

Despite the continued search for alternative production 

methods for light olefins, steam cracking is the predominant 

route and is expected to remain so in the foreseeable future 

(Amghizar et al. 2017). In recent years, artificial 

intelligence (AI) and specifically artificial neural networks 

(ANNs) have proven to be revolutionary in many 

applications, from gaming (Gibney 2016) over autonomous 

cars (Li and Gao 2018) to industrial manufacturing (Day 

2018). The impact of AI in industry can barely be 

underestimated and has been named “Industry 4.0” (Lasi et 

al. 2014).  

The traditionally conservative (petro-)chemical has 

been slow to adopt AI methods. However, their capacity to 

tackle highly complex problems poses great potential to 

develop more efficient and more accurate models at several 

scales within the process. This has been proven by the work 

of several researchers. Pyl et al. used artificial neural 

networks to reconstruct detailed naphtha compositions from 

commercial indices (Pyl et al. 2010). Other researchers have 

modeled stream cracker yields using ANNs (Ghadrdan et al. 

2009; Niaei et al. 2007; Sedighi et al. 2011). 

The drawback of traditional ANNs is that they still 

require manual engineering of the relevant features. The 

deep learning approach that is presented here circumvents 

this issue by including this step in the learning process. The 

model itself will determine and select the relevant features. 

In what follows, the application of deep learning at three 

different scales in steam cracking will be discussed: 

process, reactor and molecular scale.  



  

 

 

AI-Based Multi-Scale Modelling of Steam Cracking 

Process Modeling 

Currently companies are unable to fully exploit the 

potential of real time optimization, as detailed process 

stream analyses are time-consuming. To avoid this, an AI-

based model has been constructed that is capable of 

predicting steam cracker effluent compositions using no 

more than a limited number of commercial indices of the 

feedstock: boiling points, vapor pressure, density and basic 

PIONA composition. Figure 1 shows the parity plot for the 

most important target in steam cracking – ethene. Using just 

the abovementioned feedstock characteristics, process 

temperature, pressure and the product ratios ethene/ethane, 

methane/propene and ethene/propene, the model predicts 

the effluent ethene fraction within 5%, along with 30 other 

(pseudo-)components. 

 
Figure 1: Parity plot for the predicted ethylene mass 

fraction. 

Reactor Modeling 

A second scale at which artificial intelligence can be of 

use, is the detailed modeling of reactors. At the moment, 

this requires the solution of several differential equations: 

momentum, energy and species balances. For detailed, large 

kinetic networks, this may become prohibitively expensive, 

especially in applications such as computational fluid 

dynamics. While tabulation techniques, such as in situ 

adaptive tabulation (Pope 1997), address this issue, ANNs 

can potentially provide the same acceleration, but with more 

efficient memory usage.  

Molecular Properties 

 
Figure 2: Parity plot for the predicted boiling points. 

A final scale which is considered for the application of 

deep learning methods is the molecular scale. For naphthas 

typically used as steam cracking feedstocks, the density, 

vapor pressure, initial-, mid- and final boiling points are 

estimated with high accuracy using a deep learning ANN. 

This is illustrated by Figure 2, which shows that the boiling 

points are predicted with less than 5% error.  

Conclusions 

Artificial intelligence is having a major impact in 

several applications, though in chemical process and 

reaction engineering, the true breakthrough has not yet been 

made. Regardless, AI has the potential to become an 

indispensable tool in the chemical industry. We have shown 

that ANNs can be successfully applied in process modeling. 

Product yields are predicted within 5% of the reference 

yields. On the reactor scale, initial steps have been taken 

towards further optimizing detailed simulations. On a 

molecular scale, ANNs have been used with success to 

predict boiling points, again with less than 5% error. Based 

on these findings, it can be concluded that (deep) ANNs are 

on the verge of taking over many aspects of chemical 

engineering. 
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