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Abstract 

We have determined the change in temperature that our carbon samples undergo during Raman spectroscopy and 
developed a technique to counteract them. By producing Potassium Bromide pellets of our char samples we increase their 
thermal conductivity. We have determined that the characteristic D and G band of carbonaceous materials is an incorrect 
interpretation for hydrothermal chars, and is resultant from these thermal changes in the material. By applying our own 
fitting method to the new Raman spectra obtained using KBr pellets we characterize hydrothermal chars produced at reaction 
times ranging from 4 hours to 24 hours based on furan/arene sub-groups.   

Keywords 

Carbon, Char, Raman 

Introduction

Hydrothermal chars(hydrochars)[1] are carbonaceous 
solids derived from the thermal degradation of biomass 
under liquid water conditions[2]. The resulting material is 
oxygen rich, aromatic, and possesses carboxylic acid sites 
[3, 4]. These materials have been linked to a variety of 
applications, such as gas storage[5], metal adsorption[6] 
and soil amendment[7]. Hydrothermal carbonization is 
advantageous as a one-step method for producing materials 
with range of properties [8, 9], chemistry [10, 11] and 
potential applications [12, 13].  
 
Raman Spectroscopy of hydrochars 

 
NMR and IR spectra are two common methods for 

analyzing carbonaceous solids [6, 14-16]. NMR analysis of 
carbonaceous solids has been used to identify carbon types 
among aliphatic, aromatic and carbonyl categories. It also 
allows for nuclei based correlations and other powerful 
tools for assigning structures. In a previous work, we 
developed a fitting method, which can be used to elucidate 
the structure of hydrothermal char using Raman 
spectroscopy [17]. 

 Table 1 is a summary of the peak locations of 
vibrational modes present in CHO hydrochars based on our 
DFT study. These methods allow for characterization of the 
furan versus arene content of char on a bulk basis. In this 
work we will explore the effects of Raman laser power on 
the hydrochar, how these effects can be mitigated and 
examine the Raman spectra of hydrochar using these 
modified methods. 
 
                                                           

 

Band Range (cm−1) 
Carbonyl band 1650-1750 
GR band 1600-1630 
G band 1570-1610 
GL band 1510-1560 
Aliphatic mode 1450-1470 
Kekulé/furan band 1405-1465 
Methyl band 1385-1405 
D band 1340-1380 
Ether 1020-1150 
Breathing modeR 1190-1270 
C−H wagging on rings 1140-1190 
Breathing model 990-1070 

 
In this work, we show that the Raman spectra of glucose 
char samples from the same batch produce imply different 
structures depending on the power of the laser. Figure 1 
shows the Raman spectra of two hydrochar samples that 
have been conducted at 0.13mW and 1.3mW. The blue 
curve represents the spectrum collected at 1.3mW, at this 
power we see a traditional hydrochar spectra as previously 
reported in previous literature [18, 19]. The red curve 
represents the spectrum collected at 0.13mW. The spectra 
shows 3 relatively sharp peaks at 1290 cm-1, 1450 cm-1 and 
1575 cm-1 respectively. Based on the fitting of Brown et al 
the peak at 1575cm-1 can be attributed to 2 bands, a ‘G band’ 
at 1575cm-1 and band 1544cm-1 attributed to asymmetric 
breathing modes. The D/G ratio of this Raman spectra is 
0.505, the Kekulé/D ratio is 0.588 and the Kekulé/G ratio is 
0.298. These factors imply a molecule that possesses a 
combination of arenes and furans that are mostly unfused. 
That is, individual aromatics linked by aliphatic groups.  



  
 

 
Figure 1:Raman spectra of glucose hydrochar 180 °C 24 
hour reaction time. 532nm wavelength. 
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