FLUIDIZED BED REACTOR FOR THE INTENSIFICATION OF
GAS PHASE PHOTOCATALYTIC OXIDATIVE
DEHYDROGENATION OF CYCLOHEXANE

Paolo Ciambelli, Vincenzo Palma*, Diana Sannino and Vincenzo Vaiano
Department of Chemical and Food Engineering, University of Salerno, Fisciano, Italy

Summary
The behavior of a two-dimensional laboratory scale fluidized-bed catalytic reactor for the photocatalytic oxidative dehydrogenation of cyclohexane to benzene has been studied employing a molybdenum based catalyst and a titania-alumina mixed oxide as support. A preliminary mathematical model is proposed for the evaluation of the effect of the main factors affecting the overall reactor performances. Experimental data evinced that the reaction rate is not depending by the oxygen concentration, whereas it depends on cyclohexane concentration according to Langmuir-Hinshelwood kinetic. Taking into account that the interaction between photoexcited molybdate and adsorbed cyclohexane is the rate limiting step, the functionality in light intensity was found. The mathematical model well describes the performances of the photocatalytic fluidized bed reactor for all operating conditions examined.

Keywords
Photocatalysis, fluidized bed reactor, kinetic parameters, mathematical modeling.

Introduction
In our previous work, we reported that employing MoOx/TiO2 catalysts under UV illumination centred at 365nm, cyclohexane may be selectively oxidised to benzene in the presence of gaseous oxygen at temperature of 35°C in a gas-solid fixed bed reactor (1). More recently we also showed that it is possible to realize the same reaction on MoOx/TiO2 catalysts by using a photocatalytic fluidized bed reactor (2). In order to obtain good fluidization, physical mixtures with α-Al2O3 at different percentage of Mo-titania catalysts were experimented. An alternative is to realize TiO2-Al2O3 mixed oxide catalytic supports. MoOx/TiO2-Al2O3 catalysts showed an improved synthesis of benzene with respect to MoOx/TiO2–alumina physical mixtures (3). In the present work, the parameters influencing the kinetic of photocatalytic oxidative dehydrogenation of cyclohexane to benzene has been studied in a laboratory scale gas-solid fluidized bed photoreactor on Molybdenum based catalyst by using a titania-alumina mixed oxide as support. The effects of light intensity and of hydrocarbon and oxygen concentration were experimentally analyzed and a preliminary mathematical model was developed.

Experimental
Titania-alumina support was prepared following the procedure reported in (3). An aqueous solution of (NH4)6Mo7O24·4H2O was used as MoO3 precursor to impregnate the alumina-titania support. The calcined catalyst (10MoPC100Al) contained 10 wt % of MoO3 as nominal loading. A total gas flow rate of 50 l/h(STP) was introduced into the two dimensional photocatalytic fluidized bed reactor. The reactor was illuminated by two UV-LEDs modules positioned in front of the pyrex windows. Each UV-LEDs module consisted of 40 pieces (supplied by Nichia Corporation) with a very narrow wavelength distribution, centred at 365 nm. The reaction temperature (120 °C) was controlled by a PID controller connected to a heater system and installed into the reactor. Catalytic tests were carried out feeding N2 stream containing a cyclohexane concentration ranging between 500 and 6000 ppm, with O2/cyclohexane and H2O/cyclohexane ratio respectively of 1.5 and 1.6. Photocatalytic tests were also performed at various O2 partial pressures with an initial cyclohexane concentration equal to 1000 ppm. Catalyst weight was 14 or 20g. The gas composition was continuously measured by an on-line quadrupole mass detector (Trace MS, ThermoQuest) and a continuous CO-CO2 NDIR analyser (Uras 10, ABB).

Results
The analysis of products distribution at the reactor outlet during UV irradiation of 10MoPCA1 catalyst disclosed only the presence of benzene and traces of cyclohexene,
and no deactivation tendency is observed. The comparison of photocatalytic performances in the steady state of 10MoPC100 as a function of the initial cyclohexane and oxygen concentration evidenced that the behavior can be well described by the Langmuir-Hinshelwood kinetic model. Starting by this point, a preliminary mathematical model for the reactor description was performed through mass balance for cyclohexane as functions of bed-height. A schematic representation of the elementary fluidized bed volume is reported in Figure 1, where is considered an orthogonal monometric system $x\ y\ z$ with the plan Π_{xy} coinciding with the cross section of the reactor, and z axis with reactor height. We assumed also that photons enter into the reactor through the surfaces at $x=0$ and $x=L$ (where L is the reactor thickness), and that the value of incident light intensity is the same along z axis, with a radiant flux ϕ_0, variable only along x axis.

The equations were solved by the Eulero iterative method by fitting experimental data conversions as a function of the light intensity for a catalyst weight of 14g. The accuracy of the developed model was tested by comparing the calculated cyclohexane consumption rate with the experimental results at different incident light intensity and for a catalyst weight of 20g. In both cases the calculated values are in good agreement with the experimental data (Figure 2).

![Figure 1](image1.png) Sketch of the elementary fluidized bed volume.

Conclusions

Factors affecting the kinetic of photocatalytic oxidative dehydrogenation of cyclohexane to benzene in a two dimensional fluidized bed reactor were analyzed. A mathematical modelling has been performed by using the Langmuir-Hinshelwood kinetic model for cyclohexane concentration. Taking into account that the interaction between photoexcited molybdate and adsorbed cyclohexane is the rate limiting step, the functionality in light intensity was found, with a very good agreement between mathematical model prediction and experimental data as a function of light intensity. On the basis of these results, the accuracy of the model will be tested also with experimental data obtained as a function of initial cyclohexane concentration and as a function of the reactor thickness.

References